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35 Years Later … 



35 Years Later … 



35 Years Later … More urgent, but … 
•  Lack of a climate observing system (vs. weather) 

–  Climate is 10x the variables and 10x the accuracy of weather. 
 

•  Struggles to get sufficient resources for climate modeling 
 

•  Science questions typically qualitative not quantitative 
–  Understand and explore vs rigorous hypothesis testing 
–  Leads to intuitive “Seat of the Pants” requirements 
–  After > 30 years of climate research: time to improve 

•  What is the right amount to invest in climate science? 
–  Requires link of science to economics 
–  Requires thinking outside narrow disciplines 
–  Requires arguing for climate science, not our own science 
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A MEASURE
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In-Orbit Calibration of 
Climate-Change Monitoring



Accuracy Requirements of the Climate Observing System  

Even a perfect observing system is limited by natural variability 
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The length of time 
required to detect a 
climate trend caused 
by human activities is 
determined by: 
 
•  Natural variability 

•  The magnitude of 
human driven 
climate change 
 

•  The accuracy of the 
observing system 
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Reflected Solar Accuracy and Climate Trends 
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High accuracy is critical to more rapid understanding of climate change 

Climate Sensitivity Uncertainty  
is a factor of 4 (IPCC, 90% conf)  
which =factor of 16 uncertainty in  
climate change economic impacts 
 
 
Climate Sensitivity Uncertainty = 
Cloud Feedback Uncertainty = 
Low Cloud Feedback =  
Changes in SW CRF/decade 
(y-axis of figure) 
 
Higher Accuracy Observations = 
CLARREO reference intercal of 
CERES = narrowed uncertainty 
15 to 20 years earlier 
 
 

Wielicki et al. 2013, 
Bulletin of the American 
Meteorological Society 
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What is the right amount to invest in climate science? 

 Interdisciplinary Integration of Climate Science and Economics 

Cooke et al., Journal of Environment, Systems, and Decisions, July 2013, 
paper has open and free distribution online: doi:10.1007/s10669-013-9451-8 
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VOI Estimation Method 
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Economics: The Big Picture 
•  World GDP today ~ $70 Trillion US dollars 

•  Net Present Value (NPV) 
– compare a current investment to other investments that could have 

been made with the same resources 

•  Discount rate: 3% 
– 10 years: discount future value by factor of 1.3 
– 25 years: discount future value by factor of 2.1 
– 50 years: discount future value by factor of 4.4  
– 100 years: discount future value by factor of 21 

•  Business as usual climate damages in 2050 to 2100: 0.5% to 
5% of GDP per year depending on climate sensitivity. 
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VOI vs. Discount Rate 

Discount Rate!
CLARREO/Improved 

Climate Observations 
VOI (US 2015 dollars, net 

present value)!
2.5%" $17.6 T"
3%" $11.7 T"
5%" $3.1 T"

Run 1000s of economic simulations and then average over  
the full IPCC distribution of possible climate sensitivity 

Even at the highest discount rate, return on investment is very large 

Additional Cost of an advanced climate observing system: 
 ~ $10B/yr worldwide 

Cost for 30 years of such observations is ~ $200 to $250B (NPV) 
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VOI vs. Discount Rate 

Discount Rate!
CLARREO/Improved 

Climate Observations 
VOI (US 2015 dollars, net 

present value)!
2.5%" $17.6 T"
3%" $11.7 T"
5%" $3.1 T"

Run 1000s of economic simulations and then average over  
the full IPCC distribution of possible climate sensitivity 

Even at the highest discount rate, return on investment is very large 

Advanced Climate Observing System: 
Return on Investment: $50 per $1 

Cost of Delay: $650B per year 
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Suggested Directions 

•  Quantitative Science Questions 
–  Hypothesis Tests not “improve and explore”, think Higgs Boson 

•  Observing System Simulation Experiments (OSSEs) 
–  Improve observing system requirements 
–  Move from “base state” to “climate change” climate model tests 

•  Higher Accuracy Observations for Climate Change 
–  See BAMS Oct 2013 paper for example: broadly applicable 

•  Economic Value of Improved Climate Observations and Models 
–  See J. Env. Sys. Decisions paper for example: broadly applicable 
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Lack of accuracy = delayed knowledge 
 

We lack a climate observing system capable of testing 
climate predictions with sufficient accuracy or 
completeness 
 

At our current pace, its seems unlikely that we will 
understand climate change even after another 35 years. 
 

We cannot go back in time and measure what we failed 
to observe. 
 

Its time to invest in an advanced climate observing 
system    

Summary 
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Version 2 of VOI Study 

•  Change abrupt switch between emission scenarios (economically inefficient) 
to more gradual phased transitions: increases VOI from earlier results 

•  Add the cost of mitigating carbon emissions between scenarios 
–  early carbon emission reductions are negative cost (e.g. LED light bulbs) 
–  as reductions get larger, costs get increasingly greater.   
–  overall, reduces VOI from earlier results 

•  Bottom line: earlier $12 Trillion reduced to $8.5 Trillion  
–  both are Net Present Value at 3 % Discount Rate 
–  Return on Investment reduced from 50:1 to 35:1. 
–  value depends on emission scenario selected: 

§  DICE Optimal emissions (moderate CO2 reduction) NPV is $6 Trillion 
§  2.5C Limit emissions (larger CO2 reduction) NPV is $8.5 Trillion 
§  Stern emissions (largest CO2 reduction) NPV is $6.5 Trillion 
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Version 2 of VOI Study 
•  New Study also presents the "Real Option Value" of a new 

climate observing system.   
– Corporations use this to determine the value of investments that 

can enable options to change direction later (very similar to climate 
change knowledge investments) 

–  Includes both costs and benefits, similar to the Net Present Value 
calculation 

–  Includes changing emission scenarios optimally depending on 
observed uncertainty of climate sensitivity  

– Real Option Value for 3% Discount rate is $9 Trillion 

2
3 
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Communicating the Results 
•  First paper published online July 2013, in print early 2014 
•  Submission of second paper expected ~ Dec 2014 journal TBD. 
•  Considering development of a shorter summary paper that is intended to 

drive 2 major points home but to a much broader audience: 
–  we have no climate observing system (list key observations with no long 

term observing plan or missing process missions) 
–  economic value of an improved system (factor of 3 increase in annual 

investment from ~ $5B/yr to $15B/yr ROI is 35:1. 
–  typical expected ROI for federal investments are ~ 10:1, so this 

investment is much higher ROI 
–  every year of delay we lose ~ $0.5 Trillion in NPV 
–  U.S. is ~ 1/6th of world economy, but ½ of climate observations: so our 

ROI would be ~ 12:1.   
•  Get key co-authors: Slingo?, Trenberth?, Stephens?, Joe Schmetz? 

(EUMETSAT chief scientist), Barbara Ryan? (director GEO), GSICS lead?, 
Tom Karl? 

•  Publish in PNAS, Science, Nature, Foreign Policy? Foreign Affairs? 


